Slide 1

Unfaulted unearthed network

- Phase-to-ground voltages form a symmetrical system and their sum equal to zero at every time instance
- Capacitive charging currents (I_{cA}, I_{cB}, I_{cC}) flow through the phase-to-earth capacitances and form a symmetrical system
- I_0 measurement in feeder #1 (ΣI_{01}) measures the sum of the charging currents of that feeder, which equals to zero
- I_0 measurement in feeder #2 (ΣI_{02}) measures the sum of the charging currents of that feeder, which equals to zero

Single-phase to earth fault in phase C

- In healty phases charging current flows towars the busbar
- In faulty phase the earth fault current (sum of charging currents of the healty phases) flows **towards the fault location**
- Positive current direction is selected to be from busbar to feeders

Slide 3 Single phase to earth fault in unearthed network

Single-phase to earth fault in phase C - What happens to currents ?

Single-phase to earth fault in phase C - What happens to currents ?

• By turning the $+U_0$ -phasor in order to have it pointing upwards, the previous figure can be drawn as:

-U₀

• NOTE that in REF the characteristics for directional earth fault protection are drawn using $-U_0$

Single-phase to earth fault in phase C - What happens to currents ?

• By turning the phasors so that $-U_0$ -phasor is pointing upwards, the previous figure can be drawn as:

• In REF the characteristics for directional earth fault protection are drawn using $-U_0$

Earth fault in unearthed network

Slide 7

ABC ΣΙ₀₁ - U₀ **Assumptions:** 1. Equal feeder lengths 2. Resistive leakage R₀ losses neglected 3. Rf = 0 ohm **π** ΣΙ₀₁ 4. Positive current direction is C_{\circ} R₀ from bus to feeders U_0 - U₀ ΣΙ₀₂ ΣI₀₂

• $\Sigma I_{02} \neq I_{ef}$

• I_0 measurement in healty feeder (ΣI_{01}) includes only charging currents (healty phases) of that feeder

- I_0 measurement in faulty feeder (ΣI_{02}) includes charging currents of the galvanically connected background network, but not the charging currents of it's own (these flow in both directions through the measurement point and cancel each other)
- Directional EF-protection is based on the angle of measured I_0 versus U_0 (- U_0 in REF)

- U_0 is the voltage drop which is created when I_{ef} flows through the phase-to-earth capacitances
- R_f is **NOT** included in these!!! See equivalent circuit!!!

Earth fault in 100% compensated network

Slide 9

- Earth-fault current is cancelled by feeding an equal inductive current with a compensation coil
- I_0 measurement in healty feeder (ΣI_{01}) includes only charging currents (healty phases) of that feeder
- I_0 measurement in faulty feeder (ΣI_{02}) includes now both the resistive current created by the additonal resistor and it's own charging currents
- Directional EF-protection is based on the angle of measured I_0 versus U_0 (- U_0 in REF)

Earth fault in compensated network

Slide 10

- U_0 is the voltage drop which is created when I_{ef} flows through the impedance of the parallel connection of phase-to-earth capacitances, reactor L, additional resistor R_L and leakage resistance R_0 of the lines
- R_f is **NOT** included in these!!! See equivalent circuit!!!

Earth fault in 50% under-compensated network Slide 11

- 50% of the earth-fault current is cancelled by feeding an inductive current with a compensation coil
- I_0 measurement in healty feeder (ΣI_{01}) includes only charging currents (healty phases) of that feeder
- I_0 measurement in faulty feeder (ΣI_{02}) includes now only the resistive current created by the additonal resistor (background network's and feeders charging current flow in opposite directions in the measurement point and cancel each other)
- Directional EF-protection is based on the angle of measured I_0 versus U_0 (- U_0 in REF)

Earth fault in 150% over-compensated network Slide 12

- 150% of the earth-fault current is cancelled by feeding an inductive current with a compensation coil
- I_0 measurement in healty feeder (ΣI_{01}) includes only charging currents (healty phases) of that feeder
- I_0 measurement in faulty feeder (ΣI_{02}) includes now both the resistive current created by the additonal resistor, it's own charging currents and the overrest of the inductive current
- Directional EF-protection is based on the angle of measured I_0 versus U_0 (- U_0 in REF)

Earth fault in high resistance earthed network

Slide 13

- Earth-fault current includes a resistive part defined by the size of $R_e (\leq 1/(3 \cdot \omega \cdot C_{0tot}))$
- I_0 measurement in healty feeder (ΣI_{01}) includes only charging currents (healty phases) of that feeder
- I_0 measurement in faulty feeder (ΣI_{02}) includes now both the resistive current created by the earthing resistor and capacitive charging current of the galvanically connected background network
- Directional EF-protection is based on angle of measured I_0 versus U_0 (- U_0 in REF)

Earth fault in high resistance earthed network

Slide 14

- U_0 is the voltage drop which is created when I_{ef} flows through the impedance of the parallel connection of phase-to-earth capacitances and earthing resistor R_e
- R_f is **NOT** included in these!!! See equivalent circuit!!!