1

Тема: Универсальные характеристики ТТ (с ПХН) в переходном режиме КЗ

Добрый день!
Как в современных публикациях, так и в статьях 70 годов описывается метод получения универсальных характеристик одиночного ТТ в переходном режиме КЗ при следующих допущениях:
- сердечник ТТ имеет ПХН
- нагрузка на ТТ имеет активных характер
- в токе КЗ содержится максимальная апериодическая составляющая
- ток предаварийного режима равен 0
В статье утверждают, что при данных упрощениях зная первый момент насыщения, можно найти времена насыщения ТТ на последующих периодах. И в дальнейшем зная моменты насыщения и моменты выхода из насыщения можно получить выражения для вычисления интегральных характеристик вторичного тока, таких как действующее значение, средневыпрямленное значение, амплитудное значение и.т.д.
В статье из вложения приводят выражение для вычисления средневыпрямленного значения вторичного тока. Однако если выводить данное выражение самому, становится понятно, что автор предлагает интегрировать в точках, которые по времени совпадают друг с другом. Получается интегрируем в одной и той же точке. По всей видимости это опечатка. В связи с этим остается непонятным вопрос на каком промежутке надо интегрировать чтобы получить выражение для вычисление вышеупомянутых интегральных характеристик. Кто сталкивался с данным вопросом прошу помочь разобраться. Спасибо.

Post's attachments

Извлеченные страницы из 1975_2.pdf 780.1 Кб, 17 скачиваний с 2022-03-28 

You don't have the permssions to download the attachments of this post.

2

Re: Универсальные характеристики ТТ (с ПХН) в переходном режиме КЗ

Пришел к этой же статье после вглядывания в универсальные характеристики в экровской методике.
Думаю расчет там такой: по рис. 1 площадь под кривой от t01 с индексом n до t0 с индексом n+1, равна (по модулю) площади от t0 с индексом n+1 до ts с индексом n+1 (так как это ПХН и активная нагрузка). Значит можно найти только одну из них и умножить на 2 (отсюда двойка в формуле). Далее слева и справа от этих площадей нули, значит это всё что надо было учесть.

3

Re: Универсальные характеристики ТТ (с ПХН) в переходном режиме КЗ

Я вижу это так

у нас есть первичный ток Im*sim(wt)+Iexp*exp(-t/Ta). Переход с насыщенной области на ненасыщенную будет происходить, когда напряженность поля равна нулю. Если считать,что индуктивности во вторичной цепи нет, то как только ТТ улетает в насыщение, вторичный ток исчезает. И тогда остается только первичный ток. И выход из насыщенного состояния будет тогда, когда первичный ток перейдет через ноль.

Т.е. что-то типа нашли первый момент насыщения ts[n], далее считаем что все ноль, пока первичный ток с апериодикой не перешел через ноль. Далее как бы еще раз расчет времени до насыщения от t01[n] как бы опять заново, только теперь надо учесть, что начальная фаза поменялась. Т.е. в формуле расчета времени до насыщения есть начальная фаза тока, вот она теперь будет другая. И так далее.

А дальше получается такая кривая с вырезами, и для нее надо условно вычислить среднеквадратичное (т.е. вначале интегрировать условно от 0 до 0.02, потом от 0.001 до 0.021 и т.п.). Аналогично с фильтром Фурье.

4

Re: Универсальные характеристики ТТ (с ПХН) в переходном режиме КЗ

zigzag писал(а):
2022-03-28 12:27:58

Пришел к этой же статье после вглядывания в универсальные характеристики в экровской методике.
Думаю расчет там такой: по рис. 1 площадь под кривой от t01 с индексом n до t0 с индексом n+1, равна (по модулю) площади от t0 с индексом n+1 до ts с индексом n+1 (так как это ПХН и активная нагрузка). Значит можно найти только одну из них и умножить на 2 (отсюда двойка в формуле). Далее слева и справа от этих площадей нули, значит это всё что надо было учесть.

2 в формуле появляется когда интегрируют на половине периода.
Согласно выкладкам из статьи нашел времена насыщения, времена перехода через ноль.
Проверил ваши предположения. Согласно расчетам получается они не верны.

Post's attachments

Снимок.JPG 44.95 Кб, 1 скачиваний с 2022-03-28 

You don't have the permssions to download the attachments of this post.

5

Re: Универсальные характеристики ТТ (с ПХН) в переходном режиме КЗ

salminaleksandr96 писал(а):
2022-03-28 14:47:52

2 в формуле появляется когда интегрируют на половине периода.

а зачем интегрировать на полупериоде если средневыпрямленное это по периоду?

salminaleksandr96 писал(а):
2022-03-28 14:47:52

Согласно выкладкам из статьи нашел времена насыщения, времена перехода через ноль.
Проверил ваши предположения. Согласно расчетам получается они не верны.

Посмотрите на второе уравнение системы (1). Там написано фактически что интеграл от кривой с момента времени t01_n до ts_(n+1) равен нулю. А это значит что отрицательная и положительная площадь равны в этих временных пределах.

Присоединяйтесь!!! Мы в социальных сетях и на Ютуб.

6

Re: Универсальные характеристики ТТ (с ПХН) в переходном режиме КЗ

Согласен. Площадь отрицательного п.п. кривой i2 на n периоде равна, площади положительного п.п. кривой i2 на n+1 периоде. (увеличил точность расчетов, результаты сошлись).
Теперь возникает, на мой взгляд, логичный вопрос. Если вычислить значение на любом из п.п и умножить на 2 с.в. значение на каком периоде мы получим, на n или n+1? Или период в этом случае и нужно рассматривать на промежутке t01 с индексом n до   t01 с индексом n+1?
И каким образом нужно вычислять действующее значение ? Будем выводить формулу для расчета действующего значение путем интегрирования кривой приведенного значения первичного тока на промежутке от t01 с индексом n до ts с индексом n+1?

7

Re: Универсальные характеристики ТТ (с ПХН) в переходном режиме КЗ

salminaleksandr96 писал(а):
2022-03-29 08:30:53

Если вычислить значение на любом из п.п и умножить на 2 с.в. значение на каком периоде мы получим, на n или n+1? Или период в этом случае и нужно рассматривать на промежутке t01 с индексом n до   t01 с индексом n+1?

Думаю надо рассматривать период от момента выхода из насыщения (начало отрицательной полуволны) до момента насыщения. Ну а какой номер присвоили авторы надо смотреть. Вычислить несколько значений и сравнить с тем что показано на рисунке 4. Может как то и придется сместить.

salminaleksandr96 писал(а):
2022-03-29 08:30:53

И каким образом нужно вычислять действующее значение ? Будем выводить формулу для расчета действующего значение путем интегрирования кривой приведенного значения первичного тока на промежутке от t01 с индексом n до ts с индексом n+1?

Действующее значение по тем же пределам. Просто уже не будет как в средневыпрямленном, что достаточно только отриц. полуволны и умножения на 2.